아주대학교

주요 연구성과

  • 총 25 건, 1 of 3 page
  • 전체목록

축소이미지

최상돈 교수팀, 전신홍반루푸스 치료제 개발
2020.03.09 - 조회수 90
우리 학교 최상돈 교수가 전신홍반루푸스 치료제를 개발했다. 전신홍반루푸스는 전신의 다양한 조직에 자가면역으로 인한 염증반응이 발생하는 질환이다.최상돈 교수(생명과학과·대학원 분자과학기술학과, 사진) 연구팀은 루푸스 동물모델에서 질병 치료 효과를 검증, 혁신적 치료 선도물질을 도출해 내는 데 성공했다고 밝혔다.관련 논문은 <이바이오메디슨(EBioMedicine, 의학 분야 상위 7.7%)> 2월호 에 게재됐다. 논문의 제목은 “TIRAP 핵심 β-시트 영역 유래 펩타이드의 TLR4 제어를 통한 생쥐 모델에서의 염증성 및 자가면역 증상 완화(A peptide derived from the core β-sheet region of TIRAP decoys TLR4 and reduces inflammatory and autoimmune symptoms in murine models)"이다.전신홍반루푸스는 전신 침범 조직에 따라 피부 발진, 광과민성, 관절염, 구강궤양, 신장염, 혈구감소증, 혈관염, 장막염 등 다양한 증상을 나타낸다. 유전적인 소인을 가진 사람에게서 특정 바이러스 감염이나 자외선을 비롯한 환경적인 요인에 의해 발병한다고 알려져 있다.국내 루푸스 연도별 환자 수 추이는 2015년 2만902명에서 2019년 2만6556명으로 매년 증가하고 있다. 세계적으로는 500만명 이상이 루푸스의 한 형태인 질병에 걸린 것으로 알려져 있다. 대부분 루푸스는 20~30대 가임기의 여성에게 발병한다.최 교수팀은 루푸스 환경에서 생성되는 내인성 손상연관분자유형에 의한 톨-유사 수용체(Toll-like receptor; TLR) 신호 활성화를 자가 면역성 면역세포 촉진인자로 규정하고, 루푸스 동물모델에서 TLR7/9 제어 물질의 질병 치료 효과를 검증함으로써 혁신적인 치료 선도물질을 도출했다.이번 연구는 과학기술정보통신부 및 한국연구재단이 지원하는 원천기술개발사업의 지원을 받아 수행되었다. 우리 학교 의과대학의 서창희 교수와 대학원 분자과학기술학과 김욱 교수, 경희대 의과대학의 함대현 교수가 함께 연구에 참여했다. 이번 연구 성과는 한국연구재단의 국민체감형 연구성과로 선정, 홍보 전시되고 있다.최상돈 교수는 ”TLR 제어를 응용한 의약품은 한 가지 자가면역질환에 효과가 증명되면 다양한 다른 자가면역질환 및 염증성 질환에도 적용이 가능하다“며 ”초대형 블록버스터가 될 가능성이 충분하다“고 전했다.

축소이미지

약학과 윤태종 교수, 호르몬성 탈모 치료용 나노기술 접목 유전자 편집기술 개발
2020.01.21 - 조회수 244
윤태종 교수 연구팀이 호르몬성 탈모 치료를 위한 나노 기술 접목 유전자 편집 기술을 개발했다. 이에 부작용을 최소화하고 효능을 극대화할 수 있는 탈모 치료 약물의 개발 가능성이 높아질 것으로 기대된다. 윤태종 아주대 교수(약학과, 사진)는 초음파에 반응하는 나노 입자를 이용한 유전자 편집 소재 전달 기술을 통해 호르몬성 탈모 치료에 탁월한 치료 효과를 냄을 확인했다고 밝혔다. 관련 내용은 저명 학술지 <바이오머티리얼즈(Biomaterials)> 12월28일자 온라인판에 게재됐다. 논문 제목은 ‘CRISPR/Cas9 단백질 구조체 전달용 초음파 활성 나노 입자를 이용한 호르몬성 탈모 치료제 (Ultrasound-activated particles as CRISPR/Cas9 delivery system for androgenic alopecia therapy)’이다.호르몬성 탈모는 남성 호르몬인 테스토스테론이 두피 모낭세포에 존재하는 SRD5A2 환원 효소에 의해서 DHT라는 호르몬으로 변화되고, 이 호르몬이 두피 모낭세포의 성장을 억제함으로써 발생한다. 스트레스, 흡연 등에 따른 환경적 요인의 탈모와는 그 원인과 양상이 다른 것. DHT 생성의 원인이 되는 환원 효소는 앞머리와 윗머리 부위에 집중되어 있고 유전적으로 환원 효소가 과발현된 경우 해당 위치에 탈모가 발생한다. 이에 반해 환경적 요인의 탈모는 위치에 무관하게 발생한다. 유전적 탈모가 발생한 환자는 스트레스를 많이 받게 되고, 이는 삶의 질 악화로 이어지기 때문에 많은 관련 연구자들이 이를 치료하기 위한 약물 개발에 집중하고 있다. 현재 호르몬성 탈모 치료제로는 두타스테라이드, 피나스테라이드 등의 환원 효소 억제제를 임상적으로 사용하고 있다. 하지만 이러한 억제제들은 구강 투여제로, 두피뿐 아니라 다른 장기에 존재하는 환원 효소에도 영향을 미쳐 ▲저혈압 ▲남성의 여성 유방화 ▲간 독성 ▲성기능 장애 등의 다양한 부작용이 따르는 것으로 알려져 있다. 때문에 호르몬성 탈모를 호소하는 환자들로서는 장기 복용에 대한 부담감이 높았다. 윤태종 교수 연구팀은 외부 초음파의 자극에만 반응하는 미세 공기 방울을 활용할 경우, 일반적인 나노 구조체로 전달되기 어려운 부위에 매우 효과적으로 유전자 가위 소재(Cas9, sgRNA)를 전달할 수 있음을 확인했다.  연구팀은 호르몬성 탈모 모델에서 이를 구강 투여가 아닌 두피 도포제 형태로 적용한 나노-유전자 가위 기술을 개발해냈다. 호르몬성 탈모가 유도된 동물 모델을 대상으로 미세공기방울-나노 리포좀 구조체에 단백질 형태의 유전자 가위 물질을 탑재, 피부에 도포한 후 초음파를 탈모 부위에 가했을 때 탁월한 치료 효과를 거둘 수 있음을 확인한 것. 또한 전달된 유전자 가위가 타깃하는 SRD5A2 환원 효소 유전자를 삭제해 근본적으로 효소 생성을 억제한다는 부분도 확인했다. 이는 수 차례의 도포 처리만으로도 영구적으로 탈모 질환을 치료할 수 있음을 보여주는 결과다. 기존의 호르몬성 탈모 치료제 약물에서 나타났던 여러 부작용은 목격되지 않았고, 8주 만에 모발 생성이 회복됨을 확인할 수 있었다.윤태종 교수는 “침투가 어려운 모낭세포에 간단한 초음파 자극만으로도 빠르게 단백질 형태의 유전자 편집 물질을 전달할 수 있다는 것을 발견했다는 점이 이번 연구의 중요한 성과”라며 “유전자를 직접 편집할 수 있는 유전자 가위 기술이 근본적 탈모 치료에 큰 도움이 될 수 있을 것으로 전망되어 왔으나 그동안 나노 기술의 접목이 쉽지 않았다”고 말했다.이어 윤 교수는 "나노 기술의 유전자 가위 기술 접목에 따른 시너지 효과로 부작용을 최소화하고 효능은 극대화할 수 있어, 유전자 가위 기술이 가지는 무한한 가능성을 활용할 경우 기존 약물로는 극복하기 어려운 난치·불치성 질환을 치료할 수 있을 것"이라고 덧붙였다.윤태종 교수는 지난 20여 년간 다양한 바이오 물질을 효과적으로 세포나 조직에 전달할 수 있는 나노 소재를 연구해온 전문가다. 최근에는 유전자 가위 기술의 한계로 지적되어 온 ▲낮은 체내 안정성과 세포 침투율 ▲국부 치료가 불가능하다는 문제점 등을 극복하고자 나노 기술을 접목하는 연구에 집중해 왔다.

축소이미지

최권영 교수팀, 특정 효소 기반 친환경 바이오 기술 개발
2020.01.21 - 조회수 180
우리 학교 최권영 교수 연구팀이 특정 효소를 이용해 친환경 바이오 공정에 활용될 수 있는 바이오 생산 기술을 개발했다. 최권영 교수(환경안전공학과, 사진 왼쪽) 연구팀은 시토크롬 P450(CYP)이라는 특정 효소에 대한 친환경 바이오 및 염료 생산 기술을 개발했다고 밝혔다. 관련 연구는 ‘Cytochrome P450 수산화 효소를 이용한 지속 가능한 바이오 자원의 생촉매 전환 기술(Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources(fatty acids, fatty alkanes, and aromatic amino acids))’이라는 논문으로 1월8일자 <바이오 테크놀로지 어드밴스드(Biotechnology Advances), 논문인용지수 (IF)=12.831>에 게재됐다. 논문의 제1저자로 우리 학교 박현아(환경공학과 박사과정, 사진 오른쪽) 학생이 참여했다. 이 논문은 생물학연구정보센터(BRIC)가 발표하는 ‘한국을 빛내는 사람들’ 논문으로 선정되기도 했다.최권영 교수 연구팀은 산화 반응을 통해 독소배출(detoxification)에 관여하는 CYP 라는 효소를 이용해 지방산, 아미노산과 같은 바이오 매스로부터 폴리에스터나 폴리아마이드 같은 고분자 바이오를 생산하는 연구를 진행하고 있다. CYP(cytochrome P450 monooxygenases)는 산소와 NAD(P)H로 부터 전자를 공급받아 기질의 산화 반응을 매개하는 효소로 산업적 응용 가치가 높다. 이번 논문에서 연구팀은 CYP 효소를 이용, 다양한 바이오 매스 자원을 활용하여 현재 상용화된 고분자 단량체를 친환경 공정으로 개발할 수 있다는 점에 주목했다. 이 과정에서 CYP 효소를 생촉매로 활용할 경우 효소 공학 및 대사 공학을 이용한 다양한 공학적 엔지니어링을 통해 산업적으로 가격 경쟁력을 갖춘 친환경 공정에 적용할 수 있다는 점을 강조하였다. CYP는 친환경 바이오 공정에서 최근 주목받고 있는 효소로 여러 가지 화학물질과의 합성을 통해 고분자 바이오 생산 기술에 활용될 수 있다. 하지만 산업적으로 경쟁력이 있는 바이오 화학 제품의 실용화 단계까지 이르기에는 ▲NAD(P)H 재활용 ▲전자 전달 단백질(redox protein)의 공급 ▲heme 전구체 투입의 경제성 문제 등이 한계로 지적되어 왔다. 연구팀은 이번 논문을 통해 현재 바이오 화학 산업에서의 CYP 효소 생촉매 전환 공정 수준을 분석하고, 앞으로 극복해야 하는 다양한 공학적 난제들에 대해 설명했다.최권영 교수 연구팀은 CYP 효소를 이용해 생분해 고분자를 생산하는 방안을 연구, 환경 관련 현안으로 떠오른 플라스틱 쓰레기 문제를 해결하기 위해 노력하고 있다. 관련된 복수의 연구 논문이 섬유 공학 분야 최상위 저널 <Dyes and Pigments>에 게재되기도 했다.

축소이미지

서형탁 교수팀, 태양광 이용 친환경 수소 생산 기반 기술 개발
2019.12.30 - 조회수 250
우리 학교 서형탁 교수 연구팀이 태양광을 이용한 친환경 수소 생산에 활용될 수 있는 기반 기술을 개발했다. 수소는 대표적 청정 연료로 차세대 에너지원으로 주목받고 있으며, 최근 전기나 태양광을 이용해 수소를 생산하는 기술 연구가 활발히 진행되고 있다. 서형탁(신소재공학과·대학원 에너지시스템학과, 사진) 교수팀은 물 분해 수소 생산 효율과 내구성이 크게 향상된 실리콘 기반의 태양광전기화학 광음극을 개발하는데 성공했다고 밝혔다. 관련된 내용은 화공 촉매 분야의 저명 국제 학술지인 <어플라이드 카탈리시스 B: 인바이런멘탈(Applied Catalysis B: Environmental), 논문인용지수(IF)=14.229, JCR 저널랭킹 상위 0.962%> 12월24일자 온라인 최신호에 소개됐다. 우리 학교 샨카라 칼라누르(Shankara S. Kalanur) 교수와 박사과정의 유일한 연구원이 함께 참여했다.수소는 수소 연료 전지에 적용되어, 연료 사용 후 물이 배출되는 대표적 청정 연료원이다. 이에 수소는 수소전기차 뿐 아니라 발전과 에너지 저장 등 산업 전반으로 활용 영역이 확장되고 있다. 수소의 생산은 화석연료의 구조를 변화시키는(개질) 방식으로 주로 이루어지고 있으나, 수소 생산 중량의 9배가 넘는 이산화탄소도 함께 배출되는 점이 한계로 지적되어 왔다. 이에 최근 전기나 태양광을 이용하는 광·전기 화학적 물 분해 기술 연구가 활발히 진행되고 있다. 서형탁 교수팀이 개발한 기술은 실리콘 기반의 태양광 전기화학 광음극으로, 반도체 소자나 태양전지에 널리 쓰이는 실리콘 및 산화물 적층 구조를 활용했다. 실리콘은 이미 태양전지에 널리 활용되는 소재이지만, 물 분해와 같은 전해질 수용액 환경에서는 효율이 떨어지고 쉽게 부식되어 사용이 어려웠다.서 교수는 “최근 전기나 태양광을 활용하는 광·전기 화학적 물 분해 기술 연구가 활발히 진행되고 있지만, 기존 화석 연료 개질 방식에 비해 생산 효율이 매우 낮다는 문제가 남아 있었다”며 “하지만 이번 연구에서 저가이며 범용 소재인 실리콘과 몰리브덴 산화물 박막 적층 구조를 광음극으로 적용해 표면에서 수소를 직접 생산해내는데 성공했다”고 말했다.이 기술의 핵심은 태양광이 반도체 광전극에 입사할 때 생성된 전하를 이용해 물을 분해하는 것이다. 기존 연구에서는 광전기 물 분해 전극 중 주로 양극에서 빛을 흡수하는 광양극에 대한 연구가 진행되어 왔으나 서 교수팀은 광음극에 주목했다.연구팀은 물 분해 같은 전해질 수용액 환경에서 쉽게 부식되고 효율이 떨어지는 실리콘의 단점을 극복하기 위해, 표면 전위를 제어해 태양광에 의해 형성된 광전하를 정확한 방향으로 분리하는데 성공했다. 또 산화물을 화학적으로 안정된 실리콘 보호막으로도 활용, 전해질 용액에 의한 부식을 획기적으로 개선했다. 서형탁 교수는 “실리콘 표면에 증착된 몰리브덴 산화물 박막의 정밀 조성 최적화 핵심 원천기술을 확보했다”며 “이에 실리콘 단일 소재 광음극 대비 광전류 효율은 6배, 12시간 연속 수소 생산 전극 내구성은 8배 개선할 수 있었다”고 전했다.연구팀은 앞으로 태양광 에너지만을 이용한 자가 전력 물분해 수소 생산의 실용화 기술 개발을 위해 연구를 이어갈 계획이다. 이번 연구는 한국연구재단의 이공학 기초 연구 지원사업(기본연구 및 중견연구자 지원사업)의 지원을 받아 진행됐다.

축소이미지

김종현 교수 공동연구팀, 실내 스마트팜용 태양전지 핵심기술 개발
2019.12.16 - 조회수 269
우리 학교 김종현 교수가 포함된 한국-호주 공동 연구팀이 실내조명의 낮은 광량 만으로도 전력생산이 가능한 태양전지 기술개발에 성공했다. 김종현 아주대 교수(응용화학생명공학과·대학원 분자과학기술학과, 사진) 연구팀은 페로브스카이트(Perovskite) 광흡수 소재를 이용하여 실내조명 환경에서 활용 가능한 태양전지 개발에 성공했다고 밝혔다. 전자부품연구원의 박노창 박사팀, 호주 뉴사우스웨일즈대학(University of New South Wales, UNSW)의 윤재성 박사팀이 함께 참여했다.이번 연구 성과를 담은 논문은 나노소재 및 에너지 분야의 저명 학술지인 <나노 에너지(Nano Energy), Impact Factor:15.548/JCR 상위 3.7%> 11월23일자 온라인판에 게재되었다. 이번 연구 논문의 교신저자는 김종현 아주대 교수가 맡았다. 우리 학교 대학원 안명현 학생과 전자부품연구원의 김진철 박사는 공동1저자로 참여했다. 논문 제목은 <실내 저조도 조명환경에서 고출력 페로브스카이트 태양전지 제작을 위한 소자설계 전략과 구동원리(Device Design Rules and Operation Principles of High-Power Perovskite Solar Cells for Indoor Applications)> 이다.그동안의 태양전지는 빛의 양이 많은 태양광조사 환경 하에서 출력이 우수한 태양전지를 중심으로 연구개발 되어 왔다. 하지만 최근 실내 환경에서 사용되는 사물인터넷(IoT, Internet of Things) 센서의 수요가 급격히 증가함에 따라 이들을 독립전원으로 구동시키는데 필요한 고출력 실내 저조도 태양전지의 개발이 요구되어왔다.연구팀의 이번 성과는 높은 광량을 가지는 실외 태양광 환경에서의 우수한 태양전지 성능이 저조도 환경에서의 고출력을 보장해주지 않는다는 것을 처음으로 밝혀내고, 실내 저조도에서 태양전지의 출력을 극대화할 수 있는 원리를 제시했다는 측면에서 그 의미가 크다. 김종현 교수팀은 이번 연구를 진행하며 실내조명 광흡수 성능이 우수한 페로브스카이트 소재에 주목했다. 연구팀은 태양전지의 광흡수층과 계면층에 존재하는 미세한 전하 결함밀도 차이가 저조도 환경에서의 출력감소에 큰 영향을 미친다는 것을 밝혀냈고, 저결함밀도형 전하수송층을 도입함으로써 저조도(400 Lux)에서 100.97uW/cm2의 우수한 출력밀도를 얻을 수 있었다.김종현 교수는 “이번 연구를 통해 다양한 종류의 실내조명에 최적화된 고출력 태양전지를 개발할 수 있게 되었다”며 “관련 기술을 국내 및 호주 스마트팜에 적용하여 농작물 생육환경 센서, 가축 헬스케어 센서 및 환경 모니터링 센서로 실증하는 연구개발을 진행하고 있다”고 말했다. 김종현 교수 연구팀은 이 기술을 이용하여 센서 전문 기업인 ㈜대연씨앤아이와 함께 저조도 태양광모듈 기반 자율독립형 IoT 센서를 개발하고 있다.이번 연구는 한국산업기술진흥원의 국제공동기술개발사업과 한국연구재단의 한-오세아니아 협력기반조성사업 및 이공분야 대학중점연구소지원사업의 지원을 받아 수행되었다.

축소이미지

윤현철 · 김재호 교수 연구팀, 스마트폰 기반 '무세척 면역센싱 랩온어칩' 기술개발
2019.11.20 - 조회수 473
우리 학교 연구팀이 심근경색 등의 질병을 스마트폰으로 간단히 진단할 수 있는 '광학 바이오센서'를 개발했다. 이에 따라 심근경색 의심 환자가 병원을 방문해 1시간 가량 소요되던 검사 소요시간을 15분까지 대폭 낮출 수 있게 됐다.윤현철 · 김재호 교수 연구팀(분자과학기술학과)은 '재귀반사형 광학 바이오센서' 개발 연구결과가 바이오센서 분야의 주요 학술지인 ‘랩온어칩(Lab on a chip)’의 표지논문으로 선정 게재됐다고 20일 밝혔다. 공동연구자로 김가람, 전형진 연구원이 센싱 시스템의 효용성을 증명하기 위해 ‘스마트폰 활용 면역진단용 랩온어칩 구현 연구’에 참여했다.   논문 제목은 <Wash-free non-spectroscopic optical immunoassay by controlling retroreflective microparticle movement in a microfluidic chip>이다. 이번 연구는 삼성전자미래기술육성센터의 ICT 창의과제 및 과학기술정보통신부 미래소재디스커버리 사업의 지원으로 진행됐다. 기존의 형광 기반의 광학 바이오센서는 특정 파장대의 광원이 필수적이고, 이를 관측하려면 광학 필터와 추가적인 광학 시스템이 필요해 기기의 구성이 복잡하고 가격이 높다는 단점이 있다.  이에 연구팀은 스마트폰에서 추가의 장치 없이 운용할 수 있는 광학 바이오센서를 구현하고자, 도로 표지판과 안전조끼 등에서 흔히 활용되는 ‘재귀반사(반사된 빛을 그 소스로 되돌려 보내는 현상)'에 주목했다.   연구팀은 “바이오센서의 신호검출원리로 재귀반사현상을 이용함으로써 특정 파장대의 광원이 아닌 일반적인 백색광에서도 민감한 신호를 얻을 수 있고 배경신호가 최소화됐다"며 "관측을 위한 복잡한 광학 시스템이 없이도 스마트폰에 내장된 플래시와 카메라만을 이용해 결과 검출이 가능하다"고 설명했다. 스마트폰에 결합된 바이오센서는 응급상황에서의 검사가 필요한 심근경색 등의 질병에 대응하는데 요긴하게 쓰일 것으로 기대된다. 연구팀은 심근경색 마커에 대한 면역진단용의 바이오센서의 시제품을 개발해, 상용화를 목표로 현재 창업프로세스를 진행 중이다.

축소이미지

권오필 교수, 불소 이용한 새로운 광변환 소재 개발
2019.11.05 - 조회수 450
우리 학교 권오필 교수(응용화학생명공학과·대학원 분자과학기술학과)연구팀이 불소를 이용한 새로운 광변환 소재를 개발했다. 권오필 교수는 지난 4일 새 광변환 소재 개발 연구 성과가 광학분야 저명학술지인 <어드밴스드 옵티컬 매터리얼즈(Advanced Optical Materials)> 11월 표지 논문으로 선정됐다고 5일 밝혔다.  논문 제목은 <새로운 퀴놀리니윰 단결정을 이용한 고효율 광대역 캡-프리 테라헤르츠 광원(Efficient Gap-Free Broadband Terahertz Generators Based on New Organic Quinolinium Single Crystals)>이다. 이번 연구에서 연구팀은 불소 치환체를 음이온에 도입해 형성된 직교형태의 구조가 빛의 특성을 조절하는 광학소재를 개발했다. 앞서 연구팀은 형태특이성이 없는 불소 치환체를 양이온에 도입하는 연구를 통해 광변환 특성을 조절하는 연구를 동일 학술지인 <어드밴스드 옵티컬 매터리얼즈(Advanced Optical Materials)>에 발표한 바 있다. 해당 논문은 지난 2월 표지논문으로 선정되는 등 학계의 주목을 받아왔다. 권오필 교수는 "이번 연구는 기존 단순히 불소 치환체를 도입하는 연구에서 형태특이성이 있는 불소 치환체를 음이온에 도입해 빛의 특성을 바꾸는 진일보한 연구"라며 "이는 다양한 광변환 소재의 새로운 설계기술이 될 것"이라고 말했다.

축소이미지

박대찬 교수, 공동연구로 '장 내 염증 억제 원리' 발견
2019.10.17 - 조회수 518
우리 학교 박대찬 교수가 참여한 연구에서 염증성 장 질환의 새로운 치료제 개발 가능성을 높이게 됐다. 장내 항상성 유지 과정을 밝혀낸 연구를 통해 효과적인 염증성 장 질환 치료제를 개발할 수 있게 된 것이다. 한국연구재단은 17일 우리 학교 박대찬 교수와 서울대 백성희 교수, 연세대 황성순 교수 연구팀이 핵수용체에 의해 장 내 염증을 제어하는 원리를 찾아냈다고 밝혔다. 궤양성 대장염과 크론병 같은 염증성 장 질환은 호전과 재발을 반복하는 특성을 보이는 질환이다. 심한 경우 장이 막히거나 장내 일부 구멍(천공)이 생길 수 있다.연구팀은 특정 핵수용체('알오알 알파') 결핍 상태에서 장 내 염증이 더 심해지는 사실을 동물(생쥐) 실험에서 확인했다고 설명했다. 덱스트란 화합물을 사용해 장 내 염증 반응을 지속해서 유도했더니 '알오알 알파' 유전자 결핍 실험군 생존율이 정상군보다 감소했다. 알오알 알파 유전자가 염증반응 촉진 유전자(NFkB)를 억제하고 있었다고 연구팀은 밝혔다. 연구팀은 "다양한 분자 세포 생물학적 실험으로 미세한 부분까지 확인한 데 의의가 있다"며 "이미 시판 중인 알오알 알파 기능 조절제도 염증반응을 일부 저해할 수 있다는 사실도 규명했다"고 말했다. 한편, 연구는 과학기술정보통신부·한국연구재단의 리더 연구자 지원 사업과 기초연구사업으로 수행했다.

우) 16499 경기도 수원시 영통구 월드컵로 206 아주대학교 TEL.031-219-2114

Copyright ⓒ 2017 Ajou University. All Rights Reserved. 관리자메일보내기